Bench- and Pilot-Scale Studies: Worthwhile Tools in Optimizing Thermal Remediation Approaches

A. Fortune, G. Heron, S. Nielsen, D. Phelan (TerraTherm/Cascade Thermal)R. Wenzel, R. Stuetzle (The Dow Chemical Company)J. Bunton (Parsons Infrastructure)

Battelle 2018 Chlorinated Conference, April 8-12, 2018

Overview of Presentation

- Site History, Site Contaminants, Remedial Objectives
- Treatability Study
 - Thermal Conductive Heating (TCH)
 - Steam Enhanced Extraction (SEE)
 - Hot Water Flushing (HWF)
 - Static Chamber Testing
- Pilot Study
 - Steam Injection and Fluid Extraction Design
 - Corrosion Study
- Summary/Conclusions

Site History: Former Chemical Plant (Moss Point, MS)

100 Acre Specialty Chemical Plant (Closed 2001, Interim GW recovery)

1955 Photo: Formal Production Area (bis(2-chloroethoxy)methane)

Site Contaminants (Historical BCEM Production)

Step 1 - 2-Chloroethanol synthesis

CH2-O-CH2 + HCI → CI-CH2-CH2-OH

Ethylene Oxide

2-Chloroethanol

<u>Step 2 – "Formal" – Bis 2-Chloroethoxy Methane (BCEM)</u>

Reactive distillation under acidic conditions using 1,2-DCA as entrainer for reaction water. Acid neutralized with NH3 to prevent hydrolysis.

CI-CH2-CH2-OH + CH2O → CI-(CH2)₂O-CH2-O(CH2)₂-CI

2-Chloroethanol

Formaldehyde

BCEM

By products: Bis 2-Chloroethyl Ether (BCEE) and 1,4-Dioxane.

Site Contaminants

- Bis(2-chloroethoxy) methane (BCEM)
- 2-chloroethanol
- 1,2-Dichloroethane
- Bis(2-chloroethyl) ether (BCEE)
- 1,4-Dioxane
- 1,2,3-Trichloropropane

Soil concentrations 10-10,000 mg/kg DNAPL present

Approximately 200,000 lbs removed with groundwater pumping

Estimate 650,000 lbs mass remaining

Site History: Cross Section

Site History: Remedial Objectives

- Protective of Human Health
- Eliminate DNAPL mass or mobilization
 - Prevent migration of source plume off-site (Short term & Long term)
 - Short term and long term risk reduction
- Achieve lowest COC concentration in soil and groundwater practicable in the treatment zone
 - DNAPL mass reduction
 - Monitor remedy implementation/cost effectiveness

Next Step: Evaluate thermal treatment of site materials via bench scale study

Treatability Study

- Testing performed by KEMRON Environmental Services in Atlanta, GA
- Compare performance of 3 thermal treatment technologies
- Thermal Conductive Heating (100°C, 50% PV removal)
- Hot Water Flushing: 50°C (30 PV flush)
- Hot Water Flushing: 75°C (30 PV flush)
- Steam Enhanced Extraction (4 PV flush)

Compounds of interest spiked into soils at 500-15,000 mg/kg to simulate worse case DNAPL zones

Static Chamber Testing

Closed system with site soil (spiked) and groundwater. Outlet connected to vapor collection (Summa canisters) for analysis of vapor.

Slowly ramp temperature in chambers from 60-100°C.

Chambers for 3 day, 6 day and 10 day analysis

Understand hydrolysis of site contaminants & formation of breakdown products with no flushing

Treatability Study- Observations

Nearly all

condensate

seen in

- Breakdown products observed
 - Formaldehyde
 - Chloracetaldehyde
 - Acetaldehyde
 - Ethylene glycol—known breakdown product
 - Low pH (1-3) & high chloride (2,000-12,000 mg/L) from HCI generated—high potential for corrosion in full scale

Figure 1

Potential hydrolysis pathways for bis(2-chloroethyl) ether.

Payne, W. and Collette, T. Identification of Bis(2-chloroethyl) Ether Hydrolysis Products by Direct Aqueous Injection GC/FT-IR. Journal of High Resolution Chromatography, Volume 12 October 1989, 693-696.

Treatability Study- Results

- Steam Enhanced Extraction most effective in Alluvial and Upper Citronelle aquifers
- TCH/ISTD less effective, but still obtained 74% removal in clay
- SEE chosen for pilot testing technology

Steam Enhanced Extraction Pilot Test

- Near center of proposed full-scale treatment zone
- Most challenging area due to DNAPL (BCEM), presence of thicker Alluvial/Upper Citronelle clay layer, and alternating silt/clays in Alluvial
 - Clay layers may be heated via conduction from steam treated layers above/below
- Target treatment depth: 10-70 ft bgs (approx. 775 cubic yards)
- Two different aquifer zones, 3 steam injection intervals:
 - Shallow = Alluvial
 - Intermediate = Upper Citronelle (Intermediate)
 - Deep = Upper Citronelle (Lower)
- SIW spacing approximately 28' distance to extraction was 15'

SEE Pilot Test (26 days)

- Confirm steam injection well designs, depth & screen locations
- Confirm achievable steam injection rates & pressures
- Collect data to support well spacing & screen location
- Test liquid extraction well design/pump function
- Perform corrosion test to evaluate materials for wells, piping, etc.
- Collect heated subsurface fluids for wastewater treatment system design (Parsons)

Corrosion Study

316 SS steel and PEEK performed well

Pilot Test: Results (Water Balance)

Lower than expected permeability observed in Alluvial aquifer, resulting in lower steam injection rate and a negative net extraction

Upper Citronelle aquifer behaved as expected with steam injection rates as modeled and 24% net extraction

Conductive heating in the clay layer in between two steam injection zones was able to close the temperature gap.

Steam injection at intermediate interval stopped on 11/16/2016

Steam injection at deep interval stopped on 11/12/2016

Conclusions

- Treatability study suggested SEE would be most effective for site overall
 - Physical flushing of soil pores at 100°C temperature allows for physical displacement of NAPL, heat enhanced hydrolysis in situ and vaporization of contaminants
- Pilot test confirmed the treatment approach
 - Steam and MPE well spacing and design
 - Lower permeability areas than expected– allowed for adjustment of well spacing in full scale design
 - Steam tests documented heterogeneity in subsurface and provided important data for model

Conclusions, continued

- Corrosion testing showed 316 SS and PEEK would be recommended for any parts coming into contact with process water that are not easily replaced during operations.
 - Other more readily replaceable parts may use standard carbon steel
- Many lessons learned in groundwater treatment (Parsons)
 - Breakdown products formed contributed to high liquid phase granular activated carbon (GAC) consumption; bio treatment coupled with GAC and UV treatment proved most cost-effective.
- We are ready to move forward with full scale thermal design

Thank you

Alyson Fortune 978-730-1200 afortune@cascade-env.com

Follow Cascade on Social

Subscribe to Cascade's email list www.cascade-env.com

